18 research outputs found

    Interval Observer Design for Actuator Fault Estimation of Linear Parameter-Varying Systems

    Get PDF
    International audienceThis work is devoted to fault estimation of discrete-time Linear Parameter-Varying (LPV) systems subject to actuator additive faults and external disturbances. Under the assumption that the measurement noises and the disturbances are unknown but bounded, an interval observer is designed, based on decoupling the fault effect, to compute a lower and upper bounds for the unmeasured state and the faults. Stability conditions are expressed in terms of matrices inequalities. A case study is used to illustrate the effectiveness of the proposed approach

    Interval observers design for continuous-time linear switched systems

    Get PDF
    International audienceThis paper is devoted to investigate interval observers design for linear switched systems. The considered systems are subject to disturbances which are assumed to be unknown but bounded. First, observer gains are computed to ensure the stability of the estimation error. Then, under some changes of coordinates an interval observer is designed. Efficiency of the proposed method is demonstrated through a numerical example

    Supervision of Nonlinear Networked Control Systems Under Network Constraints

    Get PDF
    International audienceThe remote supervision for a class of nonlinear systems in the presence of additive disturbances and measurement noises is considered in this paper. The communication network may introduce time delays while exchanging data among sites connected to the network medium (i.e., the data acquisition site and the remote plant site). Two different approaches are presented in this paper. The first one uses a conventional estimator-based predictor when the uncertainties are supposed to be known. In the case of unknown but bounded uncertainties by known bounds, an interval estimation-based predictor evaluating the set of admissible values for the state is investigated. The state prediction techniques are used to compensate the effect of network-induced delays. Simulation results are introduced to illustrate the efficiency of the proposed techniques

    Design of a Fractional Order CRONE and PID Controllers for Nonlinear Systems using Multimodel Approach

    Get PDF
    This paper deals with the output regulation of nonlinear control systems in order to guarantee desired performances in the presence of plant parameters variations. The proposed control law structures are based on the fractional order PI (FOPI) and the CRONE control schemes. By introducing the multimodel approach in the closed-loop system, the presented design methodology of fractional PID control and the CRONE control guarantees desired transients. Then, the multimodel approach is used to analyze the closed-loop system properties and to get explicit expressions for evaluation of the controller parameters. The tuning of the controller parameters is based on a constrained optimization algorithm. Simulation examples are presented to show the effectiveness of the proposed method

    Recursive set membership estimation for output–error fractional models with unknown–but–bounded errors

    No full text
    This paper presents a new formulation for set-membership parameter estimation of fractional systems. In such a context, the error between the measured data and the output model is supposed to be unknown but bounded with a priori known bounds. The bounded error is specified over measurement noise, rather than over an equation error, which is mainly motivated by experimental considerations. The proposed approach is based on the optimal bounding ellipsoid algorithm for linear output-error fractional models. A numerical example is presented to show effectiveness and discuss results

    Recursive set membership estimation for output–error fractional models with unknown–but–bounded errors

    No full text
    This paper presents a new formulation for set-membership parameter estimation of fractional systems. In such a context, the error between the measured data and the output model is supposed to be unknown but bounded with a priori known bounds. The bounded error is specified over measurement noise, rather than over an equation error, which is mainly motivated by experimental considerations. The proposed approach is based on the optimal bounding ellipsoid algorithm for linear output-error fractional models. A numerical example is presented to show effectiveness and discuss results

    Set-membership methodology for model-based prognosis

    No full text
    International audienc

    Interval observer design for Linear Parameter-Varying systems subject to component faults

    No full text
    International audienceIn this paper an interval observer for Linear Parameter-Varying (LPV) systems is proposed. The considered systems are assumed to be subject to parameter uncertainties and component faults whose effect can be approximated by parameters deviations. Under some conditions, an interval observer with discrete-time Luenberger structure is developed to cope with uncertainties and faults ensuring guaranteed bounds on the estimated states and their stability. The interval observer design is based on assumption that the uncertainties and the faults magnitudes are considered as unknown but bounded. A numerical example shows the efficiency of the proposed technique
    corecore